DEPARTMENT OF MATHEMATICS

Category-I
B.Sc. (Hons.) Mathematics, Semester-VI

DISCIPLINE SPECIFIC CORE COURSE - 16: ADVANCED GROUP THEORY

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

$\left.$	$\begin{array}{l}\text { Course title } \\ \text { \& Code }\end{array}$	Credits	Credit distribution of the course			Eligibility
criteria						\(\begin{array}{l}Pre-requisite

of the course

(if any)\end{array} \right\rvert\, $$
\begin{array}{l}\text { Lecture }\end{array}
$$\) Tutorial $\left.\begin{array}{l}\text { Practical/ } \\
\text { Practice }\end{array}\right]$

Learning Objectives: The objective of the course is to introduce:

- The concept of group actions.
- Sylow's Theorem and its applications to groups of various orders.
- Composition series and Jordan-Hölder theorem.

Learning Outcomes: This course will enable the students to:

- Understand the concept of group actions and their applications.
- Understand finite groups using Sylow's theorem.
- Use Sylow's theorem to determine whether a group is simple or not.
- Understand and determine if a group is solvable or not.

SYLLABUS OF DSC-16

UNIT - I: Group Actions

(18 hours)
Definition and examples of group actions, Permutation representations; Centralizers and Normalizers, Stabilizers and kernels of group actions; Groups acting on themselves by left multiplication and conjugation with consequences; Cayley's theorem, Conjugacy classes, Class equation, Conjugacy in S_{n}, Simplicity of A_{5}.

UNIT - II: Sylow Theorems and Applications
(15 hours)
p-groups, Sylow p-subgroups, Sylow's theorem, Applications of Sylow's theorem, Groups of order $p q$ and $p^{2} q$ (p and q both prime); Finite simple groups, Nonsimplicity tests.

UNIT - III: Solvable Groups and Composition Series

(12 hours)
Solvable groups and their properties, Commutator subgroups, Nilpotent groups, Composition series, Jordan-Hölder theorem.

Essential Readings

1. Dummit, David S., \& Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley \& Sons. Student Edition, Wiley India 2016.
2. Gallian, Joseph. A. (2017). Contemporary Abstract Algebra (9th ed.). Cengage Learning India Private Limited, Delhi. Indian Reprint 2021.
3. Beachy, John A., \& Blair, William D. (2019). Abstract Algebra (4th ed.). Waveland Press.

Suggestive Readings

- Fraleigh, John B., \& Brand Neal E. (2021). A First Course in Abstract Algebra (8th ed.). Pearson.
- Herstein, I. N. (1975). Topics in Algebra (2nd ed.). Wiley India. Reprint 2022.
- Rotman, Joseph J. (1995). An Introduction to the Theory of Groups (4th ed.). Springer.

DISCIPLINE SPECIFIC CORE COURSE - 17: ADVANCED LINEAR ALGEBRA

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Advanced Linear Algebra	4	3	1	0	Class XII pass with Mathematics	DSC-4: Linear Algebra

Learning Objectives: The objective of the course is to introduce:

- Linear functionals, dual basis and the dual (or transpose) of a linear transformation.
- Diagonalization problem and Jordan canonical form for linear operators or matrices using eigenvalues.
- Inner product, norm, Cauchy-Schwarz inequality, and orthogonality on real or complex vector spaces.
- The adjoint of a linear operator with application to least squares approximation and minimal solutions to linear system.
- Characterization of self-adjoint (or normal) operators on real (or complex) spaces in terms of orthonormal bases of eigenvectors and their corresponding eigenvalues.

Learning Outcomes: This course will enable the students to:

- Understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors, including to the Gram-Schmidt process to generate an orthonormal set of vectors.
- Use eigenvectors and eigenspaces to determine the diagonalizability of a linear operator.
- Find the Jordan canonical form of matrices when they are not diagonalizable.
- Learn about normal, self-adjoint, and unitary operators and their properties, including the spectral decomposition of a linear operator.
- Find the singular value decomposition of a matrix.

SYLLABUS OF DSC-17

UNIT-I: Dual Spaces, Diagonalizable Operators and Canonical Forms
(18 hours)
The change of coordinate matrix; Dual spaces, Double dual, Dual basis, Transpose of a linear transformation and its matrix in the dual basis, Annihilators; Eigenvalues, eigenvectors, eigenspaces and the characteristic polynomial of a linear operator; Diagonalizability, Direct sum of subspaces, Invariant subspaces and the Cayley-Hamilton theorem; The Jordan canonical form and the minimal polynomial of a linear operator.

UNIT-II: Inner Product Spaces and the Adjoint of a Linear Operator

 Inner products and norms, Orthonormal basis, Gram-Schmidt orthogonalization process, Orthogonal complements, Bessel's inequality; Adjoint of a linear operator with applications to least squares approximation and minimal solutions to systems of linear equations.
UNIT-III: Class of Operators and Their Properties

Normal, self-adjoint, unitary and orthogonal operators and their properties; Orthogonal projections and the spectral theorem; Singular value decomposition for matrices.

Essential Reading

1. Friedberg, Stephen H., Insel, Arnold J., \& Spence, Lawrence E. (2019). Linear Algebra (5th ed.). Pearson Education India Reprint.

Suggestive Readings

- Hoffman, Kenneth, \& Kunze, Ray Alden (1978). Linear Algebra (2nd ed.). Prentice Hall of India Pvt. Limited. Delhi. Pearson Education India Reprint, 2015.
- Lang, Serge (1987). Linear Algebra (3rd ed.). Springer.

DISCIPLINE SPECIFIC CORE COURSE - 18: COMPLEX ANALYSIS
CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Complex Analysis	4	3	0	1	$\begin{array}{\|c} \text { Class XII pass } \\ \text { with } \\ \text { Mathematics } \end{array}$	DSC-2 \& 11: Real Analysis, Multivariate Calculus

Learning Objectives: The main objective of this course is to:

- Acquaint with the basic ideas of complex analysis.
- Learn complex-valued functions with visualization through relevant practicals.
- Emphasize on Cauchy's theorems, series expansions and calculation of residues.

Learning Outcomes: The accomplishment of the course will enable the students to:

- Grasp the significance of differentiability of complex-valued functions leading to the understanding of Cauchy-Riemann equations.
- Study some elementary functions and evaluate the contour integrals.
- Learn the role of Cauchy-Goursat theorem and the Cauchy integral formula.
- Expand some simple functions as their Taylor and Laurent series, classify the nature of singularities, find residues, and apply Cauchy Residue theorem to evaluate integrals.

SYLLABUS OF DSC-18

UNIT - I: Analytic and Elementary Functions
(15 hours)
Functions of a complex variable and mappings, Limits, Theorems on limits, Limits involving the point at infinity, Continuity and differentiation, Cauchy-Riemann equations and examples, Sufficient conditions for differentiability, Analytic functions and their examples; Exponential, logarithmic, and trigonometric functions.

UNIT - II: Complex Integration

(15 hours)
Derivatives of functions, Definite integrals of functions; Contours, Contour integrals and examples, Upper bounds for moduli of contour integrals; Antiderivatives; Cauchy-Goursat theorem; Cauchy integral formula and its extension with consequences; Liouville's theorem and the fundamental theorem of algebra.

UNIT - III: Series and Residues

(15 hours)
Taylor and Laurent series with examples; Absolute and uniform convergence of power series, Integration, differentiation and uniqueness of power series; Isolated singular points, Residues, Cauchy's residue theorem, Residue at infinity; Types of isolated singular points, Residues at poles and its examples, An application to evaluate definite integrals involving sines and cosines.

Essential Reading

1. Brown, James Ward, \& Churchill, Ruel V. (2014). Complex Variables and Applications (9th ed.). McGraw-Hill Education. Indian Reprint.

Suggestive Readings

- Bak, Joseph \& Newman, Donald J. (2010). Complex Analysis (3rd ed.). Undergraduate Texts in Mathematics, Springer.
- Mathews, John H., \& Howell, Rusell W. (2012). Complex Analysis for Mathematics and Engineering (6th ed.). Jones \& Bartlett Learning. Narosa, Delhi. Indian Edition.
- Zills, Dennis G., \& Shanahan, Patrick D. (2003). A First Course in Complex Analysis with Applications. Jones \& Bartlett Publishers.

Practical (30 hours)- Practical / Lab work to be performed in Computer Lab:

Modeling of the following similar problems using SageMath/Python/Mathematica/Maple/ MATLAB/Maxima/ Scilab etc.

1. Make a geometric plot to show that the nth roots of unity are equally spaced points that lie on the unit circle $C_{1}(0)=\{z:|z|=1\}$ and form the vertices of a regular polygon with n sides, for $n=4,5,6,7,8$.
2. Find all the solutions of the equation $z^{3}=8 i$ and represent these geometrically.
3. Write parametric equations and make a parametric plot for an ellipse centered at the origin with horizontal major axis of 4 units and vertical minor axis of 2 units.
Show the effect of rotation of this ellipse by an angle of $\frac{\pi}{6}$ radians and shifting of the centre from $(0,0)$ to $(2,1)$, by making a parametric plot.
4. Show that the image of the open disk $D_{1}(-1-i)=\{z:|z+1+i|<1\}$ under the linear transformation $w=f(z)=(3-4 i) z+6+2 i$ is the open disk:

$$
D_{5}(-1+3 i)=\{w:|w+1-3 i|<5\} .
$$

5. Show that the image of the right half-plane $\operatorname{Re} z=x>1$ under the linear transformation $w=(-1+i) z-2+3 i$ is the half-plane $v>u+7$, where $u=\operatorname{Re}(w)$, etc. Plot the map.
6. Show that the image of the right half-plane $A=\left\{z: \operatorname{Re} z \geq \frac{1}{2}\right\}$ under the mapping $w=f(z)=\frac{1}{z}$ is the closed disk $\overline{D_{1}(1)}=\{w:|w-1| \leq 1\}$ in the w-plane.
7. Make a plot of the vertical lines $x=a$, for $a=-1,-\frac{1}{2}, \frac{1}{2}, 1$ and the horizontal lines $y=b$, for $b=-1,-\frac{1}{2}, \frac{1}{2}, 1$. Find the plot of this grid under the mapping $f(z)=\frac{1}{z}$.
8. Find a parametrization of the polygonal path $C=C_{1}+C_{2}+C_{3}$ from $-1+i$ to $3-i$, where C_{1} is the line from: $-1+i$ to $-1, C_{2}$ is the line from: -1 to $1+i$ and C_{3} is the line from $1+i$ to $3-i$. Make a plot of this path.
9. Plot the line segment ' L ' joining the point $A=0$ to $B=2+\frac{\pi}{4} i$ and give an exact calculation of $\int_{L} e^{z} d z$.
10. Evaluate $\int_{C} \frac{1}{z-2} d z$, where C is the upper semicircle with radius 1 centered at $z=2$ oriented in a positive direction.
11. Show that $\int_{C_{1}} z d z=\int_{C_{2}} z d z=4+2 i$, where C_{1} is the line segment from $-1-i$ to $3+i$ and C_{2} is the portion of the parabola $x=y^{2}+2 y$ joining $-1-i$ to $3+i$.
Make plots of two contours C_{1} and C_{2} joining -1-i to $3+i$.
12. Use the ML inequality to show that $\left|\int_{C} \frac{1}{z^{2}+1} d z\right| \leq \frac{1}{2 \sqrt{5}}$, where C is the straight-line segment from 2 to $2+i$. While solving, represent the distance from the point z to the points i and $-i$, respectively, i.e., $|z-i|$ and $|z+i|$ on the complex plane \mathbb{C}.
13. Find and plot three different Laurent series representations for the function:

$$
f(z)=\frac{3}{2+z-z^{2}} \text {, involving powers of } z .
$$

14. Locate the poles of $f(z)=\frac{1}{5 z^{4}+26 z^{2}+5}$ and specify their order.
15. Locate the zeros and poles of $g(z)=\frac{\pi \cot (\pi z)}{z^{2}}$ and determine their order. Also justify that $\operatorname{Res}(g, 0)=-\pi^{2} / 3$.
